double pendulum
The kinetic & potential energies of the system are
given by
$$T=\frac{m}{2}\bigg(v_1^2+v_2^2\bigg)+\frac{I}{2}
\bigg(\dot{\theta}_1^2+\dot{\theta}_2^2\bigg),$$
$$\text{and}$$
$$V=mg\cdot(y_1+y_2),$$ respectively.
From this, one can construct the Lagrangian
$$\mathcal{L}=T-V.$$
The Euler-Lagrange equation reads
$$\frac{\partial\mathcal L}{\partial q}-\frac{d}{dt}
\frac{\partial\mathcal L}{\partial\dot q}=0$$
and leads to the following equations of motion:
$$\dot{\theta}_1=\frac{6}{ml^2}\cdot
\frac{2p_{\theta_1}-3\cos(\theta_1-\theta_2)
\cdot p_{\theta_2} }{16-9\cos^2(\theta_1-\theta_2}$$
$$\dot{\theta}_2=\frac{6}{ml^2}\cdot
\frac{8p_{\theta_2}-3\cos(\theta_1-\theta_2)
\cdot p_{\theta_1} }{16-9\cos^2(\theta_1-\theta_2}$$
$$\dot{p}_{\theta_1}=
-\frac{ml^2}{2}
\bigg(\dot{\theta}_1\dot{\theta}_2
\sin(\theta_1-\theta_2)
+3\frac{g}{l}\sin(\theta_1)\bigg)$$
$$\dot{p}_{\theta_1}=
-\frac{ml^2}{2}
\bigg(-\dot{\theta}_1\dot{\theta}_2
\sin(\theta_1-\theta_2)
+\frac{g}{l}\sin(\theta_2)\bigg)$$
For the above animation, these equations were
integrated utilizing a 4th order Runge-Kutta scheme.